
iHOGA software

improved Hybrid Optimization by Genetic Algorithms

Dr. Rodolfo Dufo López Electrical Engineering Department Universidad de Zaragoza (Spain)

Overview

- Simulation and optimization software
- Off-grid or grid-connected generating systems
- Low load systems or high load systems
- Possible load:
 - AC
 - DC
 - H₂ for external use
 - Pumped water
- Possible components:
 - Renewable sources: PV, Wind, Hydro, TEG
 - Storage:
 - Lead-acid, Li-ion or other types of batteries
 - Pumped Hydro Storage (PHS)
 - Electrolyzer H₂ tank fuel cell
 - Fossil fuel generators (can be used for back-up)
- Sell / Buy electricity to the AC grid
- Sell H₂ generated by electrolyzer (Green H₂)

Simulation

- Each combination of components and control strategies is simulated during:
 - 1 typical year (steps from 1 min. to 1 h)
 - All the system lifetime (25 years typically), considering anual changes in:
 - Electricity price (buy / sell to the AC grid)

- Sell generated green H₂ price
- PV, wind resources
- PV, wind, hydro generation
- Battery capacity
- O&M for PV or Wind

 Simulation and optimization: Simulation of the 1st year and extrapolate results O Multiperiod: simulate all the years of the system lifetime (25 years)

MULTIPERIOD SIMULATION AND OPTIMIZATION OPTIONS:		Obtain rando	m values for	PURC	HASE E. pr	rice inc.	~ Averag	ge (%):	3 Ste	d. dev. (%	6): 1		
Show in the simulation during one year:		Obtain rando	m values for	Irradia	ation variatio	on over ave	~ Avera	ge (%):	2 Sto	I. dev. (%	b) : 0		
Aerage year	Annu	al increase	in prices a	nd load (%) / Variatio	on over av	erage in r	esources	s (%) / O&	M PV - V	VT (%):		
	Year	Purch.E.	Sell E.	Sell H2	Inc. AC	Inc. DC	Inc. H2	Inc. W.	Irrad.	Wind	OM.P.	OM.W.	^
OYear number: 1	1	3	3	3	0	0	0	0	0	0	1	2	
Annual increase in electricity and H2 price:	2	3	3	3	1	1	1	1	0	0	1	2	
	3	3	3	3	1	1	1	1	0	0	1	2	
AC grid Electricity: Purchase; 3 %; Sell : 3 %	4	3	3	3	1	1	1	1	0	0	1	2	
H2 sold: 3 %	5	3	3	3	1	1	1	1	0	0	1	2	
	6	3	3	3	1	1	1	1	0	0	1	2	
Annual increase in load consumption:	7	3	3	3	1	1	1	1	0	0	1	2	
AC: 1 % DC: 1 %	8	3	3	3	1	1	1	1	0	0	1	2	
H2: 1 % Water: 1 %	9	3	3	3	1	1	1	1	0	0	1	2	
	10	3	3	3	1	1	1	1	0	0	1	2	
Annual decrease in generation:	11	3	3	3	1	1	1	1	0	0	1	2	
PV:1styear: 3 %; otheryears: 1 %	12	3	3	3	1	1	1	1	0	0	1	2	
Wind Turbines: 1 %	13	3	3	3	1	1	1	1	0	0	1	2	
Hydro Turbines: 0 %	14	3	3	3	1	1	1	1	0	0	1	2	
	15	3	3	3	1	1	1	1	0	0	1	2	
Battery end of life when capacity reduction of 20 %	16	3	3	3	1	1	1	1	0	0	1	2	
	17	3	3	3	1	1	1	1	0	0	1	2	
	18	3	3	3	1	1	1	1	0	0	1	2	
	19	3	3	3	1	1	1	1	0	0	1	2	
													~

Optimization

- Mono-objective:
 - Minimize NPC (off-grid or grid-connected systems to suppply load).
 - Also option of minimization of LCOH or minimization of payback-time or maximization of IRR savings compared to system of only AC grid
 - Maximize NPV (grid-connected power generating systems)
 - Also option of minimization of LCOE or LCOH or Cap. Factor and LCOE or maximization of IRR or minimization of payback-time.
- Multi-objective:
 - NPC CO₂ emissions
 - NPC Unmet load
 - NPC CO₂ emissions Unmet load

Economic optimization:	
Minimize Net Present Cost (NPC), usually for off-grid systems and high load on-grid ——>	 Min. NPC Min. LCOH Min. Payback period Max. IRR savings vs AC only
\bigcirc Maximize Net Present Value (NPV), usually for low load or no-load on-grid systems	
	Max. NPV
	Min. LCOE
	Min. LCOH
	Max. Cap.F. min. LCOE
	Max. IRR
	Min. Payback period

Optimization

- The software simulates and evaluates all the posible combinations of components and control strategies → obtains the optimal one (lowest NPC or highest NPV or lowes LCOE or lowest LCOH or...)
- If too many combinations -> optimization time can be too high, inadmissible → Use Genetic Algorithms metaheuristic technique → optimize in reasonable time

Control strategies

- For off-grid systems:
 - Load following
 - Cycle charging
 - Control variables
- For grid-connected power generating systems: **Energy arbitrage**
 - Fix / optimize max. electricity price to charge batteries and min. electricity price to discharge batteries -> optimal storage management
 - Also for PHS
 - Also for green H₂ generation

	CONTROLS	STRATEGY AN	ID VARIABLES	TO OPTIMIZ
--	----------	-------------	--------------	------------

-Global strategy: Load Followin	g	
🔿 Cycle Chargin	g 🗹 Continue up to	SOC stp
⊖ Try Both		
Variables to optin	nize relative to the	global strategy:
Pmin_gen	Pmin_FC	H2TANKstp
P1_gen	P1_FC	P2
SOCstp_gen	SOCstp_FC	SOCmin
Pcritical gen	Pcritical FC	Plim charge

ENERGY ARBITRAGE: System with batteries and grid connected							
Batteries are charged by the AC grid // discharged if: (also for Elyzer> H2)							
	Optimize strategy of grid-conneted batteries:						
	● 3 variables: X1 (dif.), X2(%), X3(%). X1:min. 0.029 max. 0.3251 €/kW						
	O 2 variables: price E. min. and max. Min.> 0.0008 ; Max< 0.3615 €/k						
	Batteries can inject electricity to the AC grid						
	When batteries are off, compensate		Batteries availability				

Economic and financial data

- Default currency (€) can be changed to \$ or any other
- Nominal interest rate
- Annual general inflation rate for O&M, etc.
- Annual specific inflation rates for:
 - Electricity sell Price
 - Electricity buy Price
 - H2 sell Price
 - Backup generator fuel Price
 - Change in components prices to calculate replacing costs
- Loan
- Corporate Taxes
- After simulating → calculation of NPC/NPV, LCOE, IRR, payback time... for each combination

FCO	NOMIC DATA:
(Nominal interest rate (capital cost): 4 % (nominal discount rate) Annual real discount ratel (%): Annual inflation rate (0&M): 2 % Study period (system lifetime): 25 years
E	At the end of the study period consider the residual cost of the components
	Currency Euro (€) Installation cost and variable initial cost: 300 € Fix + 2 % of initial cost
(Corporate taxes (%) 0 If in a year costs>incomes, taxes=0 that year Negative taxes accumulate and are offset later when taxes >0

Loan (constant quota, French system):
Amount of Ioan: 100 %
of the initial cost of investment
Loan Interest: 7 %
Duration of Ioan: 25 years

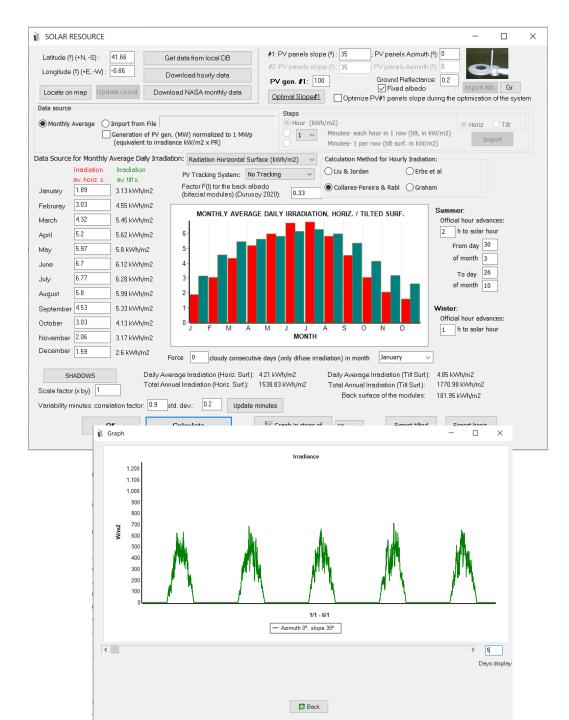
Load and Resources

- AC, DC, H2 and water pumping load can be defined in monthly average hourly vales or it can be imported in several minutes or hourly basis.
- Irradiation, wind speed and tempertaure can be:
 - Hourly values downloaded from 3 different databases (PVGIS, NASA, RENEWABLES NINJA)
 - Obtained synthetically from monthly average data
 - Imported the whole year, in steps from 1 min. to 1 h
- Water for hydro in hourly or monthly average values
- Hourly values converted to minute values using autorregresive functions

Purchase / sell electricity to AC grid

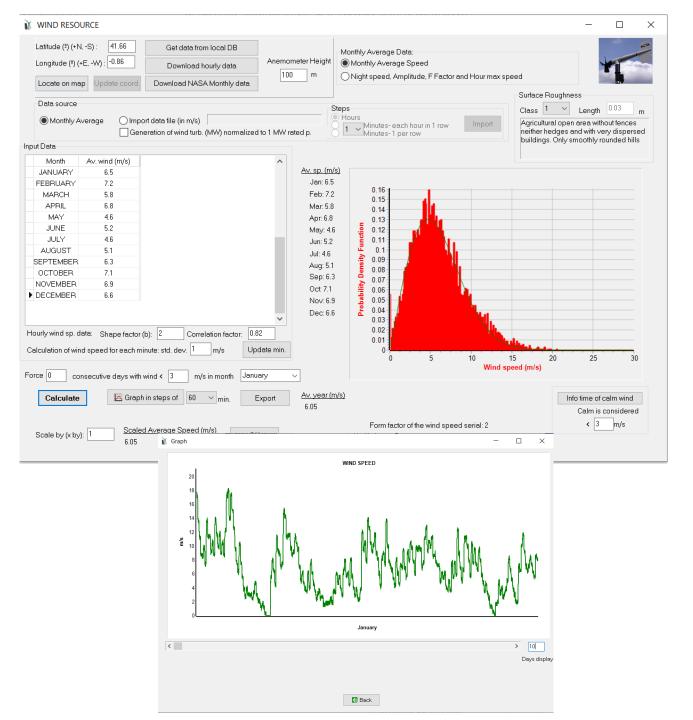
- Different prices for purchase and sell electricity
- Fixed values or hourly data, imported or by periods (TOU, RTP)
- Hourly periods also for maximum Power available from / to the AC grid
- Options for net metering / net billing

	Pmax (MW)	Cost c	of Power (€/kW/yr)
Period P1	100		40
Period P2	100		20
Period P3	100		15
Period P4	100		15
Period P5	100		15
Period P6	100		6
		OK	

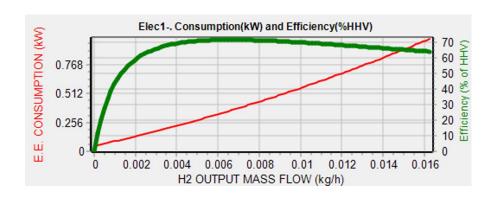

	Self-consumption and Net Mettering:
	No net mettering
	Net Metering, 1 year rolling credit
	Net Metering, no rolling credit
	Net Billing, 1 year rolling credit
	Net Billing, no rolling credit
_	Net Metering, 1 year, PERIODS
	Net Metering, PÉRIODS

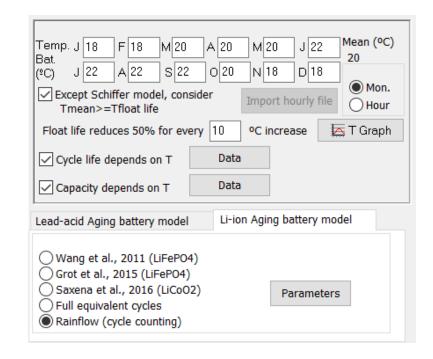
HOURLY PRICE OF THE ELECTRICITY PUE Hourly Price Date (¢/k/h) ○ Hourly, all days the same ○ From file (\$760 hourly values) Import hourly F ● Hourly Periods		ov
<u>lourly Periods:</u> Number of Hourly Periods:	3 ✓ ●Summer/Winter OMon-Fri/Weekend OHourly ffro	
Summer calendar. From day 30 month 3 To day 26 month 10	3 Mon-Fri/Weekend Hourly (tro Period P1 Price: 0.15 Period P4 Price: Period P2 Price: Period P5 Price: Period P3 Price: 0.08 Period P6 Price: 	im lie)
SUMMER periods distribution: 0-1h 1-2h 2-3h 3-4h 4-5h P3 P3 P3 P3 93 12-13h 12-13h 13-14h 14-15h 15-16h 16-17i P1 P1 P1 P2 P2	✓ P3 ✓ P3 ✓ P3 ✓ P2 ✓ P2 ✓ P2 ✓ 11.1 1 17-18h 18-19h 19-20h 20-21h 21-22h 22-23h	11-12h P2 ~ 23-24h P2 ~
D-1h 1-2h 2-3h 3-4h 4-5l P3 P3 P3 P3 P3 P3) Graph Price of the e	- C X
12:13h 13:14h 14:15h 15:16h 16:1 P2 V P2 V P2 V P3 V P3	O. 155 O. 14 O. 135 O. 14 O. 135 O. 12 O. 1	
	Purchase price: Average 0.109 €/KWh; Max: 0.15 €/KWh; Min: 0.08 €/KWh	

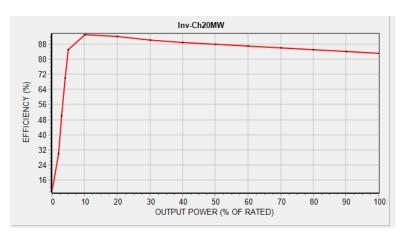
🔚 Back


Irradiation

- Irradiation over any surface, fixed (tilt, azimuth) or 1 or 2 axis tracking
- PV generator can be divided in two zones with different tilt and azimuth.
- Irradaition over the back surface is calculated → PV bifacial modules can be considered
- Concentrating PV (CPV) can be considered (direct irradiation)

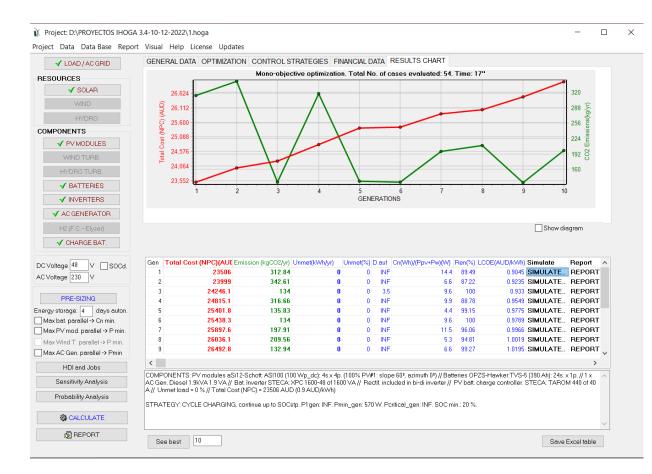

Wind speed


- Monthly average converted to hourly and minute basis
- Or download or import hourly or minute basis data



Models for components

- Accurate models for all the components
- Advanced ageing battery models, for lead-acid and for Li-ion
- Inverter and inverter-charger efficiency dependant on output power
- Variable consumption and efficiency for backup generator, electrolyzer and fuel cell



Optimization results

- Combinations sorted from best to worst (or best of each generation of the GA)
- Results table can be saved in Excel file
- Simulation of each combination (can be saved in Excel file)
- General report of each combination
- Costs report of each combination

Optimization results (simulation)

12/1

 \checkmark

1,300 -

1,200

1,100

1.000

900

800

700

400

300

200

POWER CONSUMED OR SUPPLIED (W)

AC H2 (in HHV/h of H2)

DC WATER (Whipumped)

🗸 Legend

✓ Total load

Export Energy

Water Pump

Pmax. input Inverter

Simulation step (min.): 5

Unmet Load

<

11/1

ΠR

Batter bank Discharge

E. to supply by batt.

E. max. disch. batt.

E. max. charge bat

Battery bank Charge

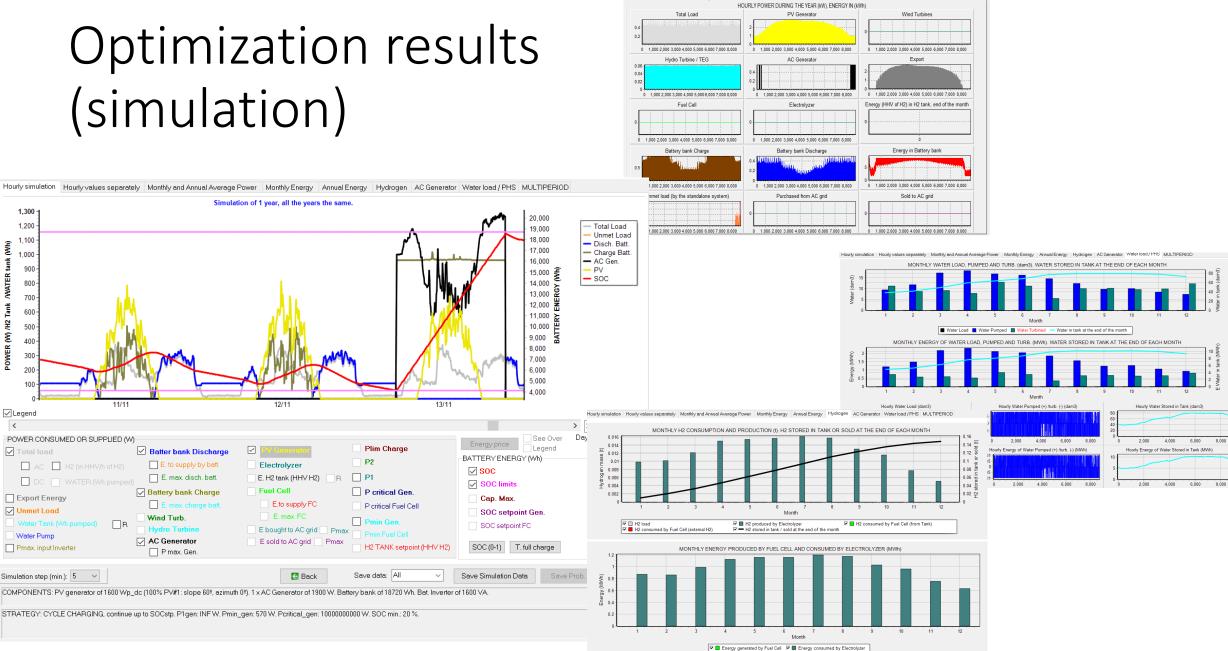
Wind Turb.

AC Generator

P max. Gen.

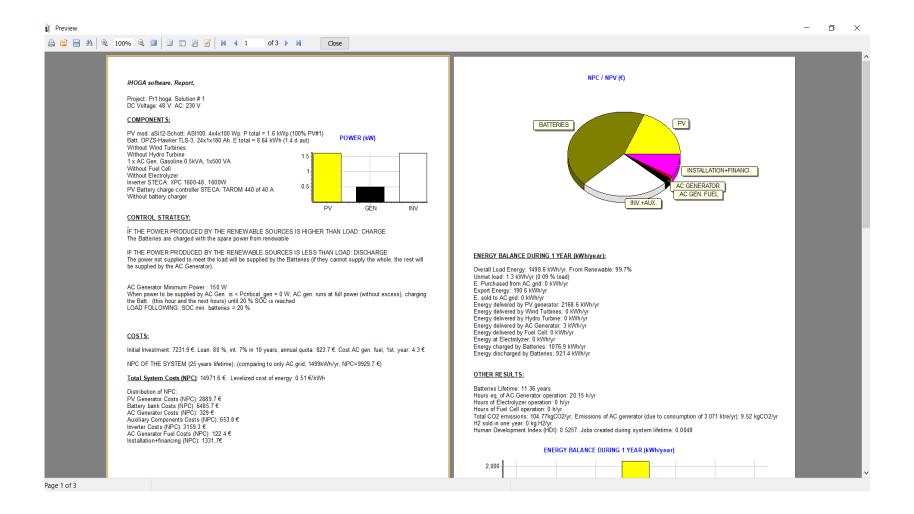
(HM

tank

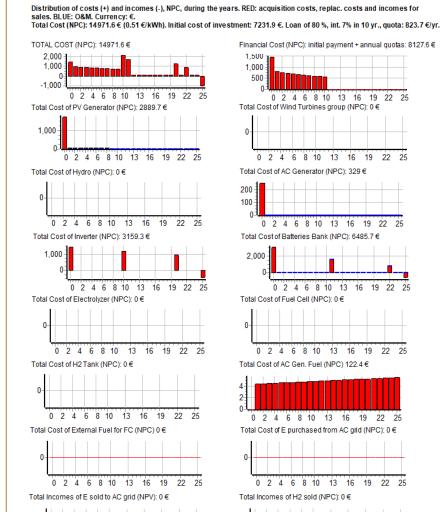

MATER

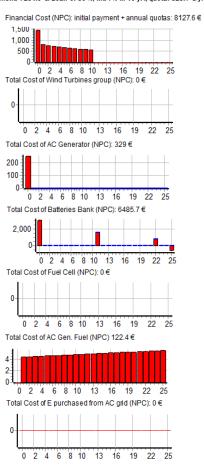
Tank 600

Ē 500


£

POWER


Hourly simulation Hourly values separately Monthly and Annual Average Power | Monthly Energy | Annual Energy | Hydrogen-detailed | AC Generator detailed | Water load | MULTIPERIOD |


Optimization results

Optimization results

Project: Pr1.hoga. Solution # 1

Other features

- Sensitivity analysis
- Probability analysis

....

Sensitivit	y Analysis		-		2
d So	olar Load	Interest and Inflation (general or electricity cost)	AC gen. fuel inflation Components cost		
	l: Case base:		N (g) PATES se and sell inflations shown in LOAD/AC GRID) nflation refers to) General inflation		
(I-g)			● Electricity inflation (Purchase and Sell price inflation) (in base case shown values of buy price inflation \ sell price inflatio	1)	

) DO NOT PERFORM PROBABILITY ANALYSIS	PERFORM PROBABILITY ANALYSIS
umber of series to analyze each combination of components and control strategy:	Relative standard error lower than (%)
Analyze variability of the average value of load	✓ Analyze variability of the average value of irradiation IRRADIATION AVERAGE VALUE Mean: 4.95 kWh/m2/day Standard Deviation (0.2 Mean: 4.95 kWh/m2/day Maximum = 5.77. Min. = 4.35 kWh/m2/day Hourly variability in the sense [0 % Std. deviation for temperature: 1 1 cc
Analyze variability of the average value of wind speed WIND SPEED AVERAGE VALUE Mean: 755 m/s Stondard Deviation: 0.5 m/s Maximum + 8.24, Min. = 6.82 m/s Hourly variability in the series: 0 % Std. deviability in the series: 1 to Consider correlation between the variables Correlation det	Analyze variability of the average value of water flow Analyze variability of the average value of fuel price inflation. Average (%): AVERAGE FUEL PRICE INFL (SUP. 5%) Mean: 5 % Standard Devietion: 0.5 % Mean: 4 382, Std. dev. = 0.476 % Maximum = 62, Min = 3.58 % Hourly variability in the series 0 %
In the simulation, show the case obtained with the following data: Load: Irradiation. Average V Average V In the case of the simulation, include hourly variability. In the probability analysis report, in the last two charts, show the p	Wind speed Fuel inflation Average Average probability distribution of: Annual cost of fuel of AC Generator (currency/yr)

More info

- <u>https://ihoga.unizar.es/en/</u>
- User manual:

https://ihoga.unizar.es/Desc/iHOGA User manual.pdf

• Getting started guide:

https://ihoga.unizar.es/Desc/GETTING_STARTED_iHOGA.pdf

Thank you!