MHOGA software

MegaWatt Hybrid Optimization by Genetic Algorithms

Dr. Rodolfo Dufo López Electrical Engineering Department Universidad de Zaragoza (Spain)

Overview

- Simulation and optimization software
- Off-grid or grid-connected generating systems
- Possible load:
 - AC
 - DC
 - H₂ for external use
 - Pumped water
- Possible components:
 - Renewable sources: PV, Wind, Hydro
 - Storage:
 - Lead-acid, Li-ion or other types of batteries
 - Pumped Hydro Storage (PHS)
 - Hydrogen: Electrolyzer H₂ tank fuel cell
 - Fossil fuel generators
- Sell / Buy electricity to the AC grid
- Sell H₂ generated by electrolyzer (Green H₂)

Simulation

- Each combination of components and control strategies is simulated during:
 - 1 typical year (steps from 1 min. to 1 h)
 - All the system lifetime (25 years typically), considering anual changes in:
 - Electricity price (buy / sell to the AC grid)

- Sell generated green H₂ price
- PV, wind resources
- PV, wind, hydro generation
- Battery capacity
- O&M for PV or Wind

 Simulation and optimization: Simulation of the 1st year and extrapolate results O Multiperiod: simulate all the years of the system lifetime (25 years)

MULTIPERIOD SIMULATION AND OPTIMIZATION OPTIONS:		Obtain rando	m values for	PURC	HASE E. pr	rice inc.	~ Avera	ge (%):	3 Ste	d. dev. (%	6): 1		
Show in the simulation during one year:		Obtain rando	m values for	Irradia	ation variatio	on over ave	~ Avera	ge (%):	2 Sto	I. dev. (%	b) : 0		
Aerage year	Annu	al increase	in prices a	nd load (%) / Variatio	on over av	erage in r	esources	s (%) / O&	M PV - V	VT (%):		
	Year	Purch.E.	Sell E.	Sell H2	Inc. AC	Inc. DC	Inc. H2	Inc. W.	Irrad.	Wind	OM.P.	OM.W.	^
OYear number: 1	1	3	3	3	0	0	0	0	0	0	1	2	
Annual increase in electricity and H2 price:	2	3	3	3	1	1	1	1	0	0	1	2	
	3	3	3	3	1	1	1	1	0	0	1	2	
AC grid Electricity: Purchase; 3 %; Sell : 3 %	4	3	3	3	1	1	1	1	0	0	1	2	
H2 sold: 3 %	5	3	3	3	1	1	1	1	0	0	1	2	
	6	3	3	3	1	1	1	1	0	0	1	2	
Annual increase in load consumption:	7	3	3	3	1	1	1	1	0	0	1	2	
AC: 1 % DC: 1 %	8	3	3	3	1	1	1	1	0	0	1	2	
H2: 1 % Water: 1 %	9	3	3	3	1	1	1	1	0	0	1	2	
	10	3	3	3	1	1	1	1	0	0	1	2	
Annual decrease in generation:	11	3	3	3	1	1	1	1	0	0	1	2	
PV:1styear: 3 %; otheryears: 1 %	12	3	3	3	1	1	1	1	0	0	1	2	
Wind Turbines: 1 %	13	3	3	3	1	1	1	1	0	0	1	2	
Hydro Turbines: 0 %	14	3	3	3	1	1	1	1	0	0	1	2	
	15	3	3	3	1	1	1	1	0	0	1	2	
Battery end of life when capacity reduction of 20 %	16	3	3	3	1	1	1	1	0	0	1	2	
	17	3	3	3	1	1	1	1	0	0	1	2	
	18	3	3	3	1	1	1	1	0	0	1	2	
	19	3	3	3	1	1	1	1	0	0	1	2	
													~

Optimization

- Mono-objective:
 - Minimize NPC (off-grid or grid-connected systems to suppply load).
 - Also option of minimization of LCOH or minimization of payback-time or maximization of IRR savings compared to system of only AC grid
 - Maximize NPV (grid-connected power generating systems)
 - Also option of minimization of LCOE or LCOH or Cap. Factor and LCOE or maximization of IRR or minimization of payback-time.
- Multi-objective:
 - NPC CO₂ emissions
 - NPC Unmet load
 - NPC CO₂ emissions Unmet load

Economic optimization:	
○ Minimize Net Present Cost (NPC), usually for off-grid systems and high load on-grid ——>	 Min. NPC Min. LCOH Min. Payback period Max. IRR savings vs AC only
Maximize Net Present Value (NPV), usually for low load or no-load on-grid systems>	
	 Min. LCOE Min. LCOH Max. Cap.F. min. LCOE Max. IRR Min. Payback period

Cost - CO2 Emis.	over min. NPC.		lomin. 300
○ Cost - Unmet load	⊖Another	Max. non-dom.:	50

Optimization

- The software simulates and evaluates all the posible combinations of components and control strategies → obtains the optimal one (lowest NPC or highest NPV or lowes LCOE or lowest LCOH or...)
- If too many combinations -> optimization time can be too high, inadmissible → Use Genetic Algorithms metaheuristic technique → optimize in reasonable time

Control strategies

- For off-grid systems:
 - Load following
 - Cycle charging
 - Control variables
- Energy arbitraje: For grid-connected power generating systems
 - Fix / optimize max. electricity price to charge batteries and min. electricity price to discharge batteries -> optimal storage management
 - Also for PHS
 - Also for green H₂ generation
- Frequency containment reserve (FCR) service

ONTROL STRATEG	Y AND VARIABLES T	O OPTIMIZE
Global strategy:		
Load Following	g	
🔿 Cycle Chargin	ig 🛛 🗹 Continue up to	SOC stp
🔿 Try Both		
Variables to optin	nize relative to the	global strategy:
Pmin_gen	Pmin_FC	H2TANKstp
Pmin_gen	Pmin_FC	H2TANKstp P2

ENERGY ARBITRAGE: System with batteries and grid connected

Batt. charged by the AC grid // discharged if: (also for Elyzer> H2) Elyzer. full load
Price E<= 0 €/kWh // Price E>= 0.11 €/kWh □ D-% ☑ (Compare with Sell price)
Optimize strategy of grid-conneted batteries:
Dettering and initial statistics to the AC with
✓ Batteries can inject electricity to the AC grid 1 day at low SOC -> charge battery with AC grid
When batteries are off, compensate autodisch.

Economic and financial data

- Default currency (€) can be changed to \$ or any other
- Nominal interest rate
- Annual general inflation rate for O&M, etc.
- Annual specific inflation rates for:
 - Electricity sell Price
 - Electricity buy Price
 - H2 sell Price
 - Backup generator fuel Price
 - Change in components prices to calculate replacing costs
- Corporate Taxes
- Loan
- Capacity market expected incomes
- After simulating → calculation of NPC/NPV, LCOE, IRR, payback time... for each combination

ECONOMIC DATA:

Nominal interest rate (capital cost): 7 % (nominal discount rate)	6 Annual real discount ratel (%): 4.9 %
Annual inflation rate (O&M): 2 %	In LCOE / LCOH include real disc. rate in Energy
Study period (system lifetime): 25 years	✓ In maximize NPV systems use Inf. sell / H2 In max. NPV, LCOE calculated with Esell+Eload sidual cost of the components
Currency Euro (€) ∨	☑ Discounted Payback period Consider Ioan: ☐ for payback
Installation cost and variable initial cost:	M€ Fix + 25 % of initial cost
Corporate taxes (%) 🛛 👘 👘 👘	osts>incomes, taxes=0 that year xes accumulate and are offset later when taxes >0

Loan (constant quota, French system):								
Amount of Ioan: 100 %								
of the initial cost of investment								
Loan Interest: 7 %								
Duration of Ioan: 25 years								

Capacity market data

CAPACITY MARKET :

In the 1st column you must enter the price of the Capacity market for the different years (referred to its year). In the rest of columns you must enter the de-rating factor of the different technologies. Obtain random values for Price Capacity Market \sim Y: hours of duration of battery X: hours of duration of battery Std. dev.: 10 Average: X: hours of duration of PHS Y: hours of duration of PHS To year: 25 From year: 1 \sim \sim \land Year Price (€/MW/yr) PV(%) Wind(%) Hydro(%) Diesel(%) F.C.(%) Bat_X_h(%) Bat_Y_h(%) PHS_X_h(% PHS_Y_h(%

Load and Resources

- AC, DC, H2 and water pumping load can be defined in monthly average hourly vales or it can be imported in several minutes or hourly basis.
- Irradiation, wind speed and tempertaure can be:
 - Hourly values downloaded from 3 different databases (PVGIS, NASA, RENEWABLES NINJA)
 - Obtained synthetically from monthly average data
 - Imported the whole year, in steps from 1 min. to 1 h.
 - Import PV / wind generation in steps from 1 min. to 1 h.
- Water for hydro in hourly or monthly average values
- Hourly values converted to minute values using autorregresive functions
- Wind and/or PV generation from a real wind turbine / PV in hourly or minutes steps can be imported and used as input for the wind turbines / PV generation.
- Wind turbines with 16 power vs wind speed curves, one for each wind direction sector (from 0° to 337.5° in steps of 22.5°) can be defined. This way the wind generation will depend not only on the wind speed but also on the wind direction.

Purchase / sell electricity to AC grid

- Different prices for purchase and sell electricity
- Fixed values or hourly, imported or by periods (TOU, RTP)
- Hourly periods also for maximum Power available from / to the AC grid
- Options for net metering / net billing

	Pmax (MW)	Cost	of Power (€/kW/yr)
Period P1	100		40
Period P2	100		20
Period P3	100		15
Period P4	100		15
Period P5	100		15
Period P6	100		6
		OK	

Self-consumption and Net Mettering:
No net mettering
Net Metering, 1 year rolling credit
Net Metering, no rolling credit
Net Billing, 1 year rolling credit
Net Billing, no rolling credit
Net Metering, 1 year, PERIODS
Net Metering, PERIODS

HOURLY PRICE OF THE ELECTRICITY PUR Hourly Price Data (\$/kWh) O Hourly, all days the same	CHASED FROM THE AC GRID			
From file (8760 hourly values) Import hourly P Hourly Periods	rice	E Draw		
Hourty Periods: Number of Hourty Periods:	3 V Summer/Winter OMon-Fri/Weekend C	House deare file)		
- · · ·	Period P1 Price: 0.15 Period P4 Price:			
From day 30 month 3	Period P2 Price: 0.12 Period P5 Price: Period P3 Price: 0.08 Period P6 Price:			
SUMMER periods distribution: 0-1h 1-2h 2-3h 3-4h 4-5h P3 P3 P3 P3 P3 12-13h 13-14h 14-15h 15-16h 16-17h P1 P1 P1	5-6h 6-7h 7-8h 8-9h 9-10h 2 P3 P3 P3 P2 P2 - 17-18h 18-19h 19-20h 20-21h 21-22h	10-11h 11-12h P2 P2 22-23h 23-24h P2 P2		
WINTER periods distribution: 0-1h 1-2h 2-3h 3-4h 4-5l	🖡 Graph			- 🗆 ×
P3 ∨ P3 ∨ P3 ∨ P3 ∨ P3 12-13h 13-14h 14-15h 15-16h 16-1		rice of the electricity PURC	CHASED from AC grid	
P2 v P2 v P2 v P3 v P3	0.155 0.154 0.145 0.135 0.13 0.135 0.13 0.135 0.125 0.150 0.155 0.116 0.115 0.116 0.105 0.095 0.095 0.085 1/1 2 2 1/1 2 2	2/1		5/1
	Yes a second	n: 0.08 £ 8.446		> 5
	r archaoc price. Average u. Luo tykaari, max. U. 16 tykaari, Mir	n. 0.00 6/KVVII.		Days display

🔚 Back

Irradiation

- Irradiation over any surface, fixed (tilt, azimuth) or 1 or 2 axis tracking
- PV generator can be divided in two zones with different tilt and azimuth.
- Irradaition over the back surface is calculated → PV bifacial modules can be considered
- CPV can be considered (direct irradiation)

Wind speed

- Monthly average converted to hourly and minute basis
- Or download or import hourly or minute basis data

Models for components

- Accurate models for all the components
- Advanced ageing battery models, for leadacid and for Li-ion
- Inverter and inverter-charger efficiency dependant on output power
- Variable consumption and efficiency for backup generator, electrolyzer and fuel cell

Nominal H2 mass flow = 0.166 t/h; It is needed at least 0.5 MW to generate H2

Optimization results

- Combinations sorted from best to worst (or best of each generation of the GA)
- Simulation of each combination
- General report of each combination
- Costs report of each combination

COMPONENTS: PV gen: PV10 (10 MWp)x6 (100% PV#1: slope 35%, azimuth 0%) // Batteries Bat5MWh (5 kAh): 1s. x 1p. // 3 Wind Turb. WindT1 (2 MW at 14 m/s) // Inverter Inv-Ch5MW of 5 MVA // Unmet load = 0 % // Total Net Present Value (NPV) = 88.373 M€, IRR = 15.5%.

STRATEGY: There is no load consumption -> no control strategy related to the load consumption supply. SOC min.: 10 %. Control variables for for grid-connected batteries: charge batt. (only from renewable, not from grid) if price of E. (sell) is lower than 0 €/kWh; disch. batt. (load + injecting to the grid) if price E. (sell) higher than 0.11 €/kWh

|--|--|

See

H D Te had H2 consumed by Fuel Cell (external H2) F → H2 stored in tank / sold at the end of the month

Optimization results

Optimization results

Project: 1.mho. Solution #1

Distribution of Incomes (+) and costs (-), NPV, during the years. RED: acqu. costs, replac. costs and incomes for final sale. BLUE: O&M. Currency: M€. Total NPV: 88.373 M€. IRR = 15.5 %, Inversion cost: 85 M€. Loan of 100 %, int. 7% in 25 vr., guota: 7.294 M€/vr.

tai NPV: 88.575 M€, IRR = 15.5%. Inversion cost: 85 M€. Loan of 100%, Int. 7% In 25 yr., quota: 7.294 M€/yr

TOTAL NPV: 88.373 M€

Total Cost of Hydro (NPV): 0 M€

U-												T
	٦	0	2	4	6	8 1	0	13 1	6 1	9 2	2	25

Total Cost of Batteries Bank (NPV): -2.462 M€

0	1				-
-1-1					
	1	111	 1	 	

0 2 4 6 8 10 13 16 19 22 25 Total Cost of Fuel Cell (NPV): 0 M€

0-								
	<u>+</u>	- <u></u>	i re	1000	<u>, , , , , , , , , , , , , , , , , , , </u>	 10		 -

0 2 4 6 8 10 13 16 19 22 25 Total Cost of AC Gen. Fuel (NPV) 0 M€

otai	Cost	OF AC	Gen.	Fuel	(INP)	v) u	W

. .

0-											
Ĭ											
	0	2	4	6	8	10	13	16	19	22	2

Total Cost of E purchased from AC grid (NPV): 0 M€

0-											
Ĭ											
	0	2	4	6	8	10	13	16	19	22	25

Total Incomes of H2 sold (NPV): 0 M€

Financial Cost (NPV): initial payment + annual quotas: -85 M€

Other features

- Sensitivity analysis
- Probability analysis

....

Sensitivity	y Analysis		-		2
d Sc	olar Load	Interest and Inflation (general or electricity cost)	AC gen. fuel inflation Components cost		
	l: Case base:		IN (g) PATES se and sell inflations shown in LOAD/AC GRID) mflation refers to) General inflation		
(I-g)			● General minimum	1)	

) DO NOT PERFORM PROBABILITY ANALYSIS	PERFORM PROBABILITY ANALYSIS
umber of series to analyze each combination of components and control strategy:	Relative standard error lower than (%)
Analyze variability of the average value of load	Analyze variability of the average value of irradiation IRRADATION AVERAGE VALUE Mean: 4.95 kWh/m2/day Standard Deviation {0.2 Mean: 4.95 kWh/m2/day Mounty variability in the series 0 % Std. deviation for temperature: 1 tc
Analyze variability of the average value of wind speed WIND SPEED AVERAGE VALUE Wean: 7.55 m/s Standard Deviation: 05 m/s Waximum = 8.24, Min. = 6.82 m/s Hourly variability in the series: 0 % Average wind speed (m/s) Consider correlation between the variables Correlation det	Analyze variability of the average value of water flow Analyze variability of the average value of superice inflation. Average (%): AVERAGE FUEL PRICE INFL (SUP.5%) Mean: 5% Standard Deviation: 0.5 % Mean= 4.982, Std. dev. = 0.476 % Moximum = 62, Min = 3.59 % Hourty variability in the series: 0 %
In the simulation, show the case obtained with the following data: Load: Irradiation: Average V Average V In the case of the simulation, include hourly variability In the probability analysis report, in the last two charts, show the p	

More info

- <u>https://ihoga.unizar.es/en/</u>
- User manual:

https://ihoga.unizar.es/Desc/MHOGA User manual.pdf

• Getting started guide:

https://ihoga.unizar.es/Desc/GETTING STARTED MHOGA.pdf

Thank you!